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LHC Run 1: 2009-2012 

§  25 fb-1 of 7+8 TeV pp data 
§  Higgs boson found! 

§  Looks like SM at first glance 
§  No physics beyond the SM 

found 
§  510 publications from ATLAS & 

CMS alone (…and counting) 2	





LHC Roadmap 
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HL-LHC  

§  3000 fb-1 delivered in the order of 10 years 
§  High “virtual” luminosity with levelling anticipated 
§  Challenging demands on the injector complex 

§  major upgrades foreseen (Linac 4, Booster 2GeV, PS 
and SPS)  
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5 x 1034 cm-2s-1 levelled luminosity 
3 fb-1 per day 
~250 fb-1 /year 



Detector Upgrades 

§  Detectors need to be upgraded to be able to 
cope with higher luminosity, e.g. 
§  Improve trigger capabilities to better discriminate 

the desired events from background as early as 
possible (at Level-1) 

§ Upgrade and/or replace inner tracking detectors as 
they e.g. 
§ Cannot handle higher rate due to bandwidth limitations 
§ Suffer from radiation damage making them less efficient 
§ Have not trigger capabilities but these will likely be 

needed at phase-2 
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Phase-0 upgrade in ATLAS: a new pixel layer 

§  ATLAS Pixel detector currently 
has three barrel layers 

§  4th layer (called “IBL”=insertable B-
layer) added in current shutdown 

§  Will improve tracking, vertexing 
and b-tagging performance 

§  Install during current shutdown 
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CMS Pixel upgrade 
§  CMS is building a new Pixel detector 

§ with 4 layers 
§  less material 
§  Improved readout chip to reduce data loss 

§  To be installed in 2016/2017 shutdown 
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Triggering is Huge Challenge 

§  Trigger reduces 40 MHz collision 
rate to 1 kHz storage rate 
§  2-3 level trigger system 
§  L1 hardware trigger: 100 kHz limit 

§  Has to become increasingly 
selective as luminosity increases 
§  Cannot afford to waste 

bandwidth on background 8	





Trigger Upgrades 
§  ATLAS is trying to salvage single-

lepton triggers    
§  Major working horse for MANY analyses 

§  At HL-LHC leptonic W’s alone have a 
rate of 1 kHz!  

§  Upgrades: 
§  Track trigger (FTK) at Level 1.5 (~2015) 
§  New Muon detector in forward region 

(2018) 
§  Improved segmentation in LAr calorimeter 

trigger (2018) 
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period W->lv  rate 
Run-1 80 Hz 
Run-2 200 Hz 
Run-3 400-600 Hz 
HL-LHC 1 kHz 



ATLAS Trigger Upgrades 
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CMS trigger upgrades 

§  Upgrades result in significant improvement in 
triggering on Higgs bosons 11	
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Near Future: Run-2 
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§  Increase in cross section by factor ~10 for M~2 TeV 
§  Discovery of TeV scale particles possible with a few fb-1 

§  Higgs measurement program enters new phase 
§  3x larger cross section and 5x more data 
§  Statistical precision improved by about a factor 4  



Future Physics Prospects (beyond run-2) 

§  Studies have been done for √s=14 TeV for integrated 
luminosities of 300 fb-1 (LHC) and 3000 fb-1 (HL-LHC) 

§  ATLAS 
§  Studies based on smearing functions applied to generated MC events 

based on realistic/pessimistic assumptions for detector performance 
§  E.g. b-tagging and missing ET performance was found to be better in the 

meantime but studies not yet updated accordingly 

§  CMS 
§  Current analyses are extrapolated to higher √s and luminosity assuming 

§  Scenario 1: systematic and theoretical uncertainties stay as they are 
§  Scenario 2: systematic uncertainties scale as √L and theoretical 

errors get cut by factor 2 
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Comment on Hadron Collider Projections 

§  I personally think that assuming √L scaling of 
systematic uncertainties is reasonable  
§  Having large statistics allows to select the “best events” 
§  Data can be used to constrain systematics in situ 

19 
MeV 

1.1 
GeV 
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Jet and Etmiss resolution at high pileup 

§  Jet resolution significantly degraded at low pT 
§ Degrades sensitivity to low mass dijet resonances 

(e.g. H->bb) 
§  For pT>100 GEV effect rather small 

§  ET
miss resolution also degrades but ~OK 
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Jet substructure at high pileup 

§  Substructure techniques still work even at 140 
pileup events 
§  Thanks to trimming! 
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Theoretical Uncertainties 
§  Theoretical predictions for processes are 

critical  for estimating cross sections and 
acceptances 
§  Missing higher order QCD corrections 

§ Estimated by varying 
renormalization and factorization 
scales  

§  Electroweak corrections (up to 20% at 
high mass) 

§  PDF uncertainties 
§ Can be reduced with future 

precision measurements at LHC 
§  Beware of acceptance! 

§  E.g. data are analyzed in Njet bins etc. 
§  Need understanding of pT(H) 19	
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Breakdown of Theoretical Uncertainties 
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Measurements of the Higgs Boson 

§  Mass will already have precision of ~100 MeV after run-2 
§  Difficult to improve  

§  Width expected to be very narrow for Higgs 
§  Cannot be measured due to limited detector resolution 

§  Spin/parity already pretty much established as 0+ 

§  Will investigate CP violating contributions 
§  Couplings to fermions and bosons can be constrained via 

measurements of σxBR expressed as µ=(σxBR)data/(σxBR)SM 
§  Interpretation in terms of couplings requires understanding of correlation 

between measurements and is model dependent 
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LHC Higgs Boson Production and Decay 

§  Couplings quantified by factors κ inserted at all the 
Higgs vertices  
§  Study how they are constrained in global fit with all 

processed jointly 
22	





Higgs: Run-1 Data Reminder 

23	



§  Signal strength µ consistent with SM 
§  Mass known to 0.6 GeV already 
§  Hypotheses JP≠0+ rejected at 95% CL 



Higgs: Run-1 coupling measurements 
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§  Higgs boson overall consistent with SM expectation for fermion and boson 
couplings but uncertainties still large in many cases 
§  Down vs up-quark coupling (λdu) 
§  Quark vs lepton coupling (λlq) 



Future Precision on μ 

§  About 10-15% achieved with 300 fb-1 
for main decay modes 

§  HL-LHC (3 ab-1):  
§  Most decay modes: precision 

improved by factor 2-3 
§  Depends on assumption on theory 

and exp. uncertainties  25	





Higgs boson couplings / partial widths 

§  Some uncertainties cancel 
in ratio of partial widths 
§  Sensitive probe as we expect 

new physics to affect different 
couplings differently 

§  Expected precision 
~10-20% for HL-LHC 
§  Factor 2-3 better than LHC 

alone 
§  Theory uncertainty limiting 

in several cases 
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Higgs boson couplings/partial width 
§  Full fit of analyses done by CMS under the two sets of assumptions: 

§  Scenario 1: systematic and theoretical uncertainties stay as they are 
§  Scenario 2: systematic uncertainties scale as √L and theoretical errors 

get cut by factor 2 
§  Truth is likely between these 2 scenarios 
§  Relative precision of 2-5% seems achievable on many couplings 

§  Depending on whether theory systematics can be reduced by ~2 
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Rare processes: H->μμ 

§  H->µµ 
§  Current upper limit 9.8 x SM expectation at mH=125 GeV 
§  Expect >5σ significance from each of the two experiments 

with 3 ab-1 

§  Precision of coupling to muons ~10-15% 
28	





Rare processes: H->Zγ 

§  H->Zγ 
§  Current limit about a factor 10 larger than SM expectation 
§  No future prospect studies yet from either collaboration 
§  Based on run-1 results expect similar sensitivity as H->µµ   
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Weak Boson Scattering 

§  Higgs boson cancels divergence at high energy in SM 
§  Test experimentally  

§  Does any strong dynamics contribute to vector boson 
interactions? 
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Weak Boson Scattering  

§  Signature of anomalous coupling is high mass 
production of pairs of vector bosons 

§  ATLAS has studied ZZ, WZ and W±W± 
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Weak Boson Scattering 

§  Use framework of effective operators to parameterize 
new physics as quartic coupling, e.g 
§  ZZ: dimension-6 operator  
§  WZ: dimension-8 operator  
§  W±W±: dimension-8 operator  
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What protects Higgs mass from being higher? 

§  Known possible answers: 
§  SUSY: top squark at m<400 GeV 

§  and gluino with m<1.6 TeV 
§  vector-like top quarks 

§  E.g. Little Higgs theories  

§  some other dramatic new physics at 
a mass scale of a few TeV 
§  E.g. extra dimensions 

§  weak scale is fine-tuned at <1% 

§  Can directly search for these 
particles at colliders 

N. Arkani-Hamed	
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Top squark production 
§  Top squarks production occurs  

§  Directly  
§  From gluino decays if gluino mass low enough 

§  Decay via top quarks or via charginos to final states of 
W’s and b’s 
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Constraints on top squarks 

§  Constraints ever improving from both ATLAS and CMS 
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Constraints on top squarks 

§  Constraints ever improving from both ATLAS and CMS 
§  However, pretty natural scenarios still allowed, e.g 

§  M(gluino)=1.5 TeV, m(stop)=300 GeV, m(LSP)=150 GeV 
§  LHC (and HL-LHC) will be able to discover such scenarios 

36	





Gluino reach if decay via top/bottom 
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§  With 300/fb reach about 2 TeV in gluino mass 



Top squark discovery potential 
§  300 fb-1: 

§  Discovery up to ~800 GeV 
in direct production 

§  Using same analysis cuts 
for 3000 fb-1: 
§  Discovery up to ~900 GeV 
§  Expect to improve when 

analysis cuts retuned for 
higher luminosity 
§  Can probably improve 

further when optimized 

§  Exclusion covers 1 TeV 
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New physics at the weak scale 

§  Even if Nature is finetuned and stop is heavy we 
have other reasons for new physics at weak scale 
§  Unification of couplings, Dark Matter, …  

§  E.g. in “split-SUSY” other scalars are all heavy but 
gauginos are at ~low mass 

Dramatic improvement in reach by HL-LHC: probing ~1 TeV charginos!	
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Generic Squarks and Gluinos 

§  Search for large ET
miss and large Meff 

§  Current limit ~1 TeV at 95% CL: 
§  Will be extended to 2.3 (2.7) TeV with LHC (HL-LHC) if we 

don’t discover it 
§  Discovery potential ~2.3 TeV with HL-LHC  
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Vector-like Quarks 

§  Vector-like quarks are colored spin-1/2 fermions which 
transform the same for left- and right-handed under 
EW gauge group 

§  Alternative solution to little hierarchy problem 
§  Appear in many BSM models, e.g. 

§  Little Higgs, Extra Dim., … 41	





Vector-like Top: Present 
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Currently probing up to about 600-800 GeV 



Vector-like Quarks: future 

§  Probe up to 1.5 TeV with 300 fb-1 
43	





Other New Particles: Present 
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§  Reach ranges from a few 100 GeV to a few TeV  



ttbar resonances 
§  Current limits are on σxBR 

are ~0.1 pb 
§  Expect to improve by a factor 

of ~100 with HL-LHC 
§  Probe KK gluons up to 

masses of ~6.7 TeV 
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Z’  
(TeV) 

gKK 
(TeV) 

Run-1 1.8 2.0 

300 fb-1 3.3 4.3  

3000 fb-1 5.5 6.7 

95% CL limits on: 



Dilepton resonances 
§  Current limits are on σxBR 

are ~0.3 fb 
§  Expect to improve by a factor 

of ~100 with HL-LHC 
§  Probe Z’SSM up to masses 

of 7.8 TeV 
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Z’-> ee 
(TeV) 

Z’->µµ 
(TeV) 

Run-1 2.79 2.48 

300 fb-1 6.5 6.4  

3000 fb-1 7.8 7.6 

95% CL limits on: 



Rare Decays of Top quark 

§  In SM top quark decays to Wb 
nearly 100% 
§  Observing decays to other 

modes clear sign of new physics 
§  Many models predict 

enhancements 
§  Interesting range starts at ~10-4 

§  HL-LHC will probe ~3x10-5 at 
least 47	





European Strategy 

§  In 2012 European Strategy convened to plan 
the future of particle physics in Europe 
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European Strategy 

§  In 2012 European Strategy convened to plan 
the future of particle physics in Europe 
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Snowmass process in US ongoing, followed by P5 panel 
which will suggest funding priorities 



Do we have to know results from 13 TeV  
run to decide on HL-LHC? 

§  Compare scenarios depending on what we 
know by 2017 
§  Assume about 50 fb-1 by 2017 analyzed 

Observation in 2017 
 

Conclusion 

A Found 5σ excess in data in at least 
one BSM signature 

B Found 3σ excess in data in at least 
one BSM signature 

C Found no excess in data >2σ but 
deviation in Higgs by 3σ 

D Found no excess in data and no 
deviation in Higgs either 
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Far(ish)Future 
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High Energy LHC: HE-LHC 
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Re-equip existing LHC tunnel with high field 
magnets	



Circumference 26.7 km 
Maximum dipole field 20 T 
Injection energy from SC-
SPS 

1.3 TeV 

Maximum c.o.m. energy 33 TeV 
Peak luminosity 5 x 1034 cm-2s-1 

Conceptual layout of 
20 T dipole magnet	


(Nb3Sn and HTS)	


Intense R&D 
required	
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Pre-Feasibility Study for an 80-km 
tunnel at CERN	


John Osborne and Caroline Waaijer, 
CERN, ARUP & GADZ	



Geneva	



LHC	



80 to 100 km Very High Energy LHC VHE-
LHC	



100 km	





VHE-LHC 
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Circumference 80 or 100 km 
Maximum dipole field  20 or 16 T 
Injection energy  > 3.0 TeV 
Maximum c.o.m. energy 100 TeV 
Peak luminosity 5 x 1034 cm-2s-1 

Stored beam energy ~5500 MJ 

Among the many challenges: 	


•  Synchrotron radiation heat load 33 W/m	


•  Collimation!	


•  IR quadrupoles	


•  Arc quadrupoles  (naïve scaling gives 1593 T/m at 50 TeV beam energy)	





Conclusions 
§  Run-1 has been a fantastic success 

§  Found a Higgs boson 
§  Severe constraints on physics BSM 
§  >500 papers published on vast variety of topics 

§  Knowledge of TeV scale physics will be improved 
dramatically by future LHC running 
§  Going to full energy and increase L by factor 100 
§  Higgs couplings will be measured with precision of 2-10% 
§  Searches for new particles will extend mass reach by ~2-3 

§  Theorists play critical role in fully exploiting LHC 
§  HL-LHC significantly improves upon LHC and 

considered top priority in Europe 
§  Higher energy options being studied (R&D) 55	




